Classic Set Theory For Guided Independent Study Goldrei Derek creator text Londres hapman and Hall / CRC 1996 monographic eng
print
508 p. Digital
Tabla de Contenido: THE REAL NUMBERS Introduction Dedekind's construction Alternative constructions The rational numbers THE NATURAL NUMBERS Introduction The construction of the natural numbers Arithmetic Finite sets THE ZERMELO-FRAENKEL AXIOMS Introduction A formal language Axioms 1 to 3 Axioms 4 to 6 Axioms 7 to 9 CARDINAL (Without the Axiom of Choice) Introduction Comparing Sizes Basic properties of ˜ and = Infinite sets without AC-countable sets Uncountable sets and cardinal arithmetic without AC ORDERED SETS Introduction Linearly ordered sets Order arithmetic Well-ordered sets ORDINAL NUMBERS Introduction Ordinal numbers Beginning ordinal arithmetic Ordinal arithmetic The Às SET THEORY WITH THE AXIOM OF CHOICE Introduction The well-ordering principle Cardinal arithmetic and the axiom of choice The continuum hypothesis REFERENCIA APA: Goldrei, D. (1996). Classic set theory : a guided independent study. London New York: Chapman & Hall. MATEMATICAS TEORIA DE CONJUNTOS IC19 Digital 0412606100 https://ulead.sharepoint.com/:b:/g/EdTo-OXHr7hAuMkSg33UGooBQhsp6TsVqe2p2iNcU4RdYA?e=R7XNvf https://ulead.sharepoint.com/:b:/g/EdTo-OXHr7hAuMkSg33UGooBQhsp6TsVqe2p2iNcU4RdYA?e=R7XNvf 190129 20190129133917.0